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Abstract

The phenomenon of triboelectroluminescence is studied using a generalization

of the Weisskopf-Wigner model of spontaneous emission in an electronic two-

level system. An irreversible and exponential transfer of charge results from

the model. The charge transfer between two linear atomic chains is computed

as a function of the separation of the two chains and as a function of the tem-

perature. Triboelectroluminescence due to spontaneous emission is found to

be more efficient when the electron states in the two materials have a larger

energy separation and decays rapidly with separation. It is insensitive to tem-

perature variation when the electrons emanate from insulators or surface

states, but not when they emanate from partially-filled bands due to the ther-

mal excitation of the electrons.
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1 | INTRODUCTION

The generation of electrostatic charge via contact of or
friction between two materials is known as triboelectric-
ity and is a natural phenomenon with important techno-
logical and industrial applications.1,2 Long-time
consequences of triboelectric charging include lightning
and the operation of laser printers. Even more exciting
are the endless possibilities a small-scale, clean and envi-
ronmental source of energy would bring to self-powered
devices and vehicles such as self-powered displays3 and
biosensors.4,5 A fully quantitative computation of the
charge transfer for most macroscopic objects is impossi-
ble due to their unknown microstructures and the often
ill-defined environmental conditions of experiments.6

Additionally, the resulting surface charge density of the
order of 10−4 cm−2 amounts to roughly one unit of charge

transferred for every 100 000 or so of surface atoms.7

Hence, most theories and modeling to date have con-
cerned themselves with phenomenological approaches.8,9

Certainly, if the charged particles being transferred are
electrons, as is most often the case, a fundamental
starting point should be a quantum theory of the elec-
trons. Electronic-structure theories of material properties,
as implemented in ab initio codes, have indeed been used
to calculate the charge transfer between two materials,
albeit with limited success.10-18 Thus, they were used to
compute intrinsic localized molecular-ion levels to vali-
date charge transfer for metal-polymer10 and polymer-
polymer11 contacts. More recently, they have been used
in an attempt to calculate charge transfer, though in
some cases the computed quantity was a bond polarity,
and in all cases the driving force was not explicity given.
A different perspective was recently proposed by Alicki
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and Jenkins,19 whereby the irreversibility of the electron
transfer was analyzed in terms of the motion-induced
population inversion and this provided an upper bound
on the attainable voltage difference.

A resurgence of interest in the study of triboelectricity
due to better experimental control using nanostructures
and the proposal of a triboelectric nanogenerator
(TENG)1 has led us to propose a different approach to
analyzing the charge transfer during the triboelectric
process,20-22 one that can hopefully bridge the different
time and length scales of the problem. In References 21
and 22, we studied the charge transfer due to quantum
tunneling between two semi-infinite materials and
between two linear chains, whereas in Reference 20, we
considered a two-level electronic system in thermal equi-
librium with a photon bath and the emission of photons
accompanying the charge transfer. We label the latter
phenomenon as triboelectroluminescence to distinguish
from triboluminescence23 since the latter is often associ-
ated with a more complex process. For instance, tribolu-
minescence has been associated with piezoelectric
crystals and their symmetry whereas no such require-
ments are needed to describe triboelectroluminescence.

In this article, we propose a more in depth study of
the phenomenon of triboelectroluminescence. The elec-
trons in the two materials are modeled using a one-
electron Hamiltonian in a localized basis in order to
allow for nonperiodicity. The spontaneous emission pro-
cess is modeled by generalizing the Weisskopf-Wigner
model of spontaneous decay for a two-level atom.24 The
neglect of stimulated emission is justified if there is no
photon bath available. Experimentally, this would occur
if the system is not enclosed in a cavity, allowing the
emitted photons to radiate away and not reach equilib-
rium in the surrounding of the system. Since the opera-
tion of a TENG involves the relative motion of two
materials, we have calculated the charge transfer as a
function of the separation of the two materials. Further-
more, as experiments have been carried out as a function
of temperature in order to elucidate the mechanism of
charge transfer, we have investigated the impact of tem-
perature dependence via the Fermi-Dirac function.

2 | GENERALIZED WEISSKOPF-
WIGNER MODEL

The Weisskopf-Wigner model treats the transition of an
electron from an excited atomic state to a ground state
with the spontaneous emission of photons and was ini-
tially applied to the hydrogen atom. It led to an exponen-
tial decay of the electron from the excited state and to a
Lorentzian spectrum of emitted photons. We have

generalized the above model to study the transfer of elec-
trons from one material (left) to another (right) with the
emission of photons.

2.1 | Hamiltonian

The Hamiltonian of the problem represents electrons
in the materials interacting with the electromagnetic
field:

H =Helec +HF +H int, ð1Þ

where Helec is a one-electron Hamiltonian, HF is the
Hamiltonian of the transverse electromagnetic field, and
Hint will be chosen to be a dipole interaction. In order to
incorporate materials lacking translational symmetry (ie,
finite ones), we choose a Wannier representation of the
electron Hamiltonian25:

Helec =
X
ij,αβ

εiαc
†
i,αci,αδijδαβ + tiα,jβc

†
i,αcj,β + t�iα,jβc

†
j,βci,α

� �h i
,

ð2Þ

where c†i,α ci,αð Þ creates (annihilates) an electron at site i
and with orbital ϕα, εiα are the onsite energies, and the
tiα,jβ are hopping parameters between two different
atoms. We will typically let α represent s- and p-like
Wannier orbitals (ie, a two-band model) and only include
nearest-neighbor hopping.

The field Hamiltonian HF is

HF =
X
k,s

ℏωkn̂k,s, ð3Þ

where ℏωk is the photon energy, n̂k,s is the number oper-
ator, and k and s denote the wave vector and polariza-
tion, respectively.

The electron-photon interaction representing sponta-
neous emission between two electronic eigenstates (m
denoting a higher energy (“excited”) state on the left and
n a lower energy state (“ground”) on the right) is
given by

H int = −
X
m,n

X
k,s

ℏgm,n
k,s σ̂emgn âk,s +h:c:, ð4Þ

where σ̂emgn = e†mgn , with e†m the creation operator for an
electronic excited state m on the left, gn the annihilation
operator for an electronic ground state n on the right, âk,s
the annihilation operator for a photon, and the coupling
constant is
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gm,n
k,s = i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ωk

2ℏε0V

r
dm,n�εk,s, ð5Þ

with V the field normalization volume, dm,n the electric
dipole matrix element coupling states em and gn,

dm,n = gn er emj i,jh

and εk,s the photon polarization.

2.2 | Wave function

Each material is assumed to consist of discrete energy
states, with the left material populated with electrons up
to a certain energy state (at T = 0 K), the “excited” states,
and the right material having empty states of lower
energy, the “ground” states, in order to accommodate
those electrons. When the electron is on the left, we
assume it is coupled with no photon, whereas it is
coupled to one photon of wave vector k and polarization
s when it is in the ground state. Thus, a general state of
an electron at a time t is given by the wave function

jψ tð Þi=
X
m

am tð Þe− iωmt j em,0i+
X
n
bn tð Þe− iωk,st j gn,1k,si:

ð6Þ

Here, ℏωm is the energy of the electron in the excited
state with respect to the ground-state energy.

2.3 | Schrödinger equation

The time dynamics of the electrons is obtained by solving
the time-dependent Schrödinger equation:

H jψ tð Þi= iℏ
∂ jψ tð Þi

∂t
: ð7Þ

Our problem is more general than the two-level system
considered by Weisskopf and Wigner since there are mul-
tiple electronic levels in each material. However, we can
arrive at a solution resembling the Weisskopf-Wigner
(WW) solution26 by first considering one level (labeled m
and n, respectively) in each material. Then, the WW solu-
tion applies and one can immediately write

dam tð Þ
dt

= −
Γ
2
am tð Þ, Γ=

ω3
0 dmnj j2

3πε0ℏc3
, ð8Þ

where ℏω0 = (Em − En) and dmn are the energy difference
and the electric dipole between the two electronic states,

respectively. The WW differential equation can be trivi-
ally integrated to give a decaying exponential evolution
with time. If we write each energy eigenstate as a linear
combination of the Wannier orbitals,

j emi=
X
i,α

cm,L
i,α ϕi,α, j gni=

X
j,β

cn,Rj,β ϕj,β, ð9Þ

one can re-express the band dipoles in terms of atomic
dipoles:

dmnj j2 =
X
ij,αβ

cm,L
i,α

�
cn,Rj,β ϕi,α er ϕj,β

�� E��� ���2:
������ ð10Þ

Next, we consider multiple left states and a single right state n.
Then, the differential equations for the am's and for bn are

dam tð Þ
dt

= i
X
k,s

gm,n
k bnk tð Þe− i ωk−ωmnð Þt, ð11Þ

dbnk tð Þ
dt

= i
X
m0

gm
0,n

k

�
am0 tð Þei ωk−ωm0nð Þt: ð12Þ

Following the procedure of Weisskopf and Wigner, we find

dam tð Þ
dt

= −
X
m0

Γn
mm0

2
eiωmm0 tam0 tð Þ, ð13Þ

with

Γn
mm0 =

ω3
m0n j dmndnm0 j
3πε0ℏc3

: ð14Þ

Finally, if we allow for multiple levels on the right, this is
the same as saying that there are multiple decay channels
and one simply add the decay rates. Hence, the most gen-
eral first-order differential equation governing the ampli-
tude of the electrons on the left is

dam tð Þ
dt

= −
X
m0

am0 tð Þeiωmm0 t
X
n

Γn
mm0

2
: ð15Þ

3 | CALCULATIONS

3.1 | Model system

The above formalism applies very generally to describe
the electron transfer from one material to another with
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the emission of a photon. Each material can be an insula-
tor, metal or semiconductor. In general, electron transfer
between two materials could have a spin dependence
from a spin-dependent potential. For the specific mecha-
nism that we study in this work (optical emission), there
is no dependence on electron spin and, therefore, mag-
netic properties except for its impact on spin-resolved
band structures. Thus, our calculation applies to mag-
netic materials as well once the appropriate band struc-
ture is obtained.

For concreteness and simplicity, we report calcula-
tions for one-dimensional solids represented by finite lin-
ear chains of identical atoms. In order to allow for
multiple bands and for band gaps, we use a two-band
model for Helec (Appendix). The resulting Wannier Ham-
iltonian for each material is then parameterized by a set
of onsite and hopping parameters (Table 1). For simplic-
ity, we have chosen the surface parameters to be the
same as the bulk values. The tight-binding parameters
for the left and right chains have been chosen to be very
similar except for a rigid shift of the right energies down
by 1 eV so that electrons can transfer between the same
type of states from left to right with a loss of energy. We
have also restricted the hopping to nearest neighbors.

We have carried out calculations for chains of various
lengths. Example energy spectra for chains of 30 atoms
are given in Figure 1. The bands are only quasi-
continuous given the finite number of atoms; increasing
the number of atoms leaves the allowed energy bands the
same. Two bands are clearly visible and there are two
almost degenerate surface states in the gaps (eigenstate
labels # 30 and 31 in Figures 1 and 2). The decoupling of
the left and right surface states gives an indication that
the chains are long enough to simulate bulk properties;
hence, we choose 30 atoms as the minimum chain
length. States #32-35 are “band” states in the upper band.

We choose electrons in the left material to have a
higher energy than those on the right and they can then
transfer to the right material to occupy empty states there
with the emission of photons. Since the photon emission
process is governed by the strength of the dipole matrix
elements, a model of the dipole transition strength

between two eigenstates is needed. Equation (10) relates
the band dipoles to atomic dipoles. A model of atomic
dipoles was introduced in Reference 20. It is to be
expected that the atomic dipole matrix element would
weaken with the separation of the two atoms. Addition-
ally, model calculations using hydrogenic orbitals reveal
the dependence of the atomic dipole matrix elements
with both atomic separation and with orbital type
(Figure 3).

Hence, we have parameterized the distance (between
the left and right materials) dependence of the atomic
dipole matrix elements by a Gaussian function,

diα,jβ xð Þ= d0iα,jβe
−γαβx

2
, ð16Þ

where we have chosen γαβ to approximately reproduce
the behavior displayed in Figure 3; we chose all γ = 0.2.
We have kept optical transitions involving atoms that are
up to two atomic sites apart (Table 2). For a two-level sys-
tem, it is clear from Equation (14) that the decay rate is
directly proportional to the strength of the dipole matrix
element squared.

Finally, we have pointed out the importance of study-
ing the temperature dependence as a way of getting
insights into the charge transfer mechanism. Here, we
assume that the effect of temperature is to change the
electron distribution in the materials according to the
Fermi-Dirac distribution:

f Emð Þ= 1
1+ eβ Em−EFð Þ ,β=1= kBTð Þ, ð17Þ

where Em is the electron energy as before, EF is the Fermi
energy, and T the temperature. We assume that, at time
t = 0 s and T = 0 K, electrons occupy all levels up to the
Fermi energy.

3.2 | Results

We now present results of calculations of the charge
transfer between two finite chains with the emission of
photons. With M electrons on the left at time t = 0, the
fractional charge transferred is calculated as

f c tð Þ=1−
1
M

XM
m=1

am tð Þj j2: ð18Þ

Equation (13) is solved using the ode45 routine within
MATLAB©; it uses the Runge-Kutta algorithm of order
4. Unless otherwise stated, all results will be for two

TABLE 1 Tight-binding parameters (in eV)

Left Right

εs −3.0 −4.0

εp −5.0 −6.0

tss −4.0 −4.0

tpp 1.0 1.0

tsp −2.0 −2.0

4 LEW YAN VOON ET AL.



atomic chains of 30 atoms each, with no separation
between the two chains, and at T = 0 K.

3.2.1 | Insulator-insulator

Consider first a two-level system, with one surface state
occupied (eg, #30 in Figure 2) in the left material as the
“excited” state and the other surface state empty (#31) in
the right material. The fractional charging is shown in
Figure 4. This is exactly the WW solution and the elec-
tron transfers from the left state to the right one at an
exponential rate. One can introduce a measure of this
charging rate as the time τ it takes to charge up to 63%;
here, τ ≈ 0.04 μs. This is much slower than the quantum
tunneling rate for isoelectronic charge transfer in Refer-
ences 21 and 22, where we obtained transfer rates in the
femtosecond regime for a hopping parameter of the order
of 1 eV. Hence, if the energy states in both materials are
aligned, we expect quantum tunneling to be the domi-
nant mechanism; otherwise, it is forbidden and the
charge transfer can occur via photon emission. Both
mechanisms require the contact spacing to be only a few
Å (see below for calculations as a function of separation).
Note, however, that while the transition is an electric
dipole one and the rate is related to the dipole matrix ele-
ment, the rate is also governed by the energy difference
between the two levels (Equation (14)). Hence, for fixed

dipole matrix elements, the rate increases with increasing
energy spacing, that is, τ gets smaller. This is due to the
larger phase space available for photon modes with
increasing photon energy. Charge transfer between insu-
lators has been postulated to involve surface states.6

Hence, the above analysis could potentially apply to
charge transfer between insulators.

3.2.2 | Insulator-metal

One can simulate charge transfer from an insulator to a
metal by assuming the left chain to be filled up to the sur-
face state and the right chain to have empty states in the
lower band. Again, one can start with a two-level system
if only one empty state is available; one obtains τ = 0.81
μs. If there are more empty states available, one expects
the decay rate to increase (see Equation (13)) and the
decay time to decrease; indeed, assuming states #28 and
29 to be available, one finds τ = 0.17 μs.

3.2.3 | Metal-Insulator

Our model of a metal is one with a partially filled band.
Hence, we consider transitions from multiple levels in
the upper band to the surface state. Consider the case
with states #32-35 filled and decaying to state #30. The
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overall charging gives τ = 0.04 μs (Figure 5A). Note, how-
ever, that one can compute the decay rate of each of the
left states and they are different (Figure 5B). The differ-
ence in decay rate is due to both the different transition
energies and different wave function localization. One
sees in Figure 2 how the wave function “pushes” more
toward the surfaces as the band index increases.

3.2.4 | Temperature dependence

There are a number of ways one can expect temperature
to play a role in the charge transfer between two mate-
rials. One way is if phonons are emitted or absorbed in
the process. However, we are not considering this addi-
tional mechanism in this article. Another is the change
in the electronic properties with thermal expansion. This

is known to lead to small changes in the band gap of a
material of the order of a few tens of meV for a tempera-
ture change of 100 K. Since both materials will experi-
ence this effect, it will partially cancel out and the
residual change in the energy difference between two
states is likely insignificant. The more significant effect is
expected to be a change in the electron distribution
among energy states. However, the latter temperature
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while states #32-35 are “band” states in the upper band
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TABLE 2 Atomic dipole moments (in eÅ)

d0
ss d0

sp d0
sp

Nearest-neighbor 20.0 10.0 20.0

Next-nearest-neighbor 2.0 1.0 2.0
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dependence is again expected to be negligible if the mate-
rial is an insulator or even a semiconductor since the
amount of electrons excited across a gap is very small
even at room temperature. Indeed, we found this to be
the case in our model when the uppermost electrons
were located in the surface states.

Recent experimental data show an approximately linear
increase of charge transfer of the order of 50% from 313 K
to 433 K between a Au-coated AFM tip (metal) and a SiO2

layer (insulator); that mechanism was attributed to therm-
ionic emission and a lowering of the potential barrier for
electron transport with increasing temperature. We con-
sider here whether temperature can impact spontaneous
emission. Indeed, for electrons originating from a metal,
that is, when electrons do not completely fill a band, we did
find some small changes in the transition rate. As an exam-
ple, consider electrons populating all states up to the lowest
upper band state (eigenstate #32) in the left material at
t = 0 and for T = 0 K and transitioning to a surface state on
the right (ie, an insulator). The change in that initial elec-
tron distribution as a function of temperature from 300 K to
500 K is shown in Figure 6. One can see some appreciable
occupation of states higher than #32 for all three tempera-
tures shown. Note that the energy difference between the
lowest two upper band levels is about 36 meV for the
30-atom chain, hence the appreciable population at room
temperature and above. At T = 500 K, states up to #35 have
appreciable electron population (we used 1% as the cut-off).
Thus, at finite temperatures, electrons from all these popu-
lated states can transfer to the right material with emission
of photons. Since each of these states could have a different
dipole matrix element and certainly a different energy com-
pared to the state on the right, the transition rates are
expected to be different.
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An example of how the electron population in differ-
ent states change with time for different temperatures is
plotted in Figure 7. At T = 0 K (not shown), only
states up to #32 are occupied; at T = 300 K and
T = 400 K, there is appreciable occupation of states up

to #34 and, for T = 500 K, state #35 is additionally
occupied. We calculated the fractional charge transfer
associated with these initial electron distributions
(Figure 8). The different curves at different tempera-
tures can be seen to be slightly changed, showing that
there is some temperature dependence.

3.2.5 | Separation

The charge transfer was also studied as a function of the
separation of the two materials. One can identify the
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possible physical reasons for a dependence from Equa-
tions (13) and (14). Note, first of all, that the electron wave
functions and energies do not change since these are for
each individual material. Hence, the only origin for a dis-
tance dependence lies in the atomic dipoles, as parameter-
ized by Equation (16). For a two-level system (ie, isolated
surface states on insulators), the overall decay constant is
given by Equation (14), that is, it would decrease exponen-
tially with the separation. A similar behavior should result
for other systems. The results obtained at T = 0 K for sepa-
rations from 0 Å (ie, touching) to 10 Å for an insulator-
insulator contact is given in Figure 9. We illustrate with an
example of the initial electron population filling the surface
states on the left and available states on the right being the
surface states. It can be seen that the charge transfer is
strongly dependent on the separation. Indeed, there is no
charge transfer for our model system for separations of the
order of 5 Å. Hence, spontaneous emission is equally short-
ranged as quantum tunneling is21 in facilitating charge
transfer between two materials.

4 | SUMMARY

The Weisskopf-Wigner model of spontaneous emission
provides a physical picture of the process of thermolu-
minescence and has allowed us to analyze how the
transfer rate of electrons depends on various factors
such as the nature of the materials, their mutual sepa-
ration and the external temperature. For electric-dipole
allowed transitions, the typical decay time is in the
range of microseconds. The charge transfer decays very
quickly with increasing separation due to the weaken-
ing of the dipole transitions. Temperature is predicted
not to be a factor for insulator-insulator contacts.
Unless the system is enclosed in a cavity, the process is
expected to not reach thermal equilibrium and to be
irreversible.
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APPENDIX: TWO-BAND, NEAREST-
NEIGHBOR, FINITE CHAIN

We provide here the explicit form of the Wannier Hamil-
tonian given formally in Equation (2). We have assumed
two orbitals on each atom (labeled as s and p-like), only
kept nearest-neighbor interactions, and not assumed any
periodicity. Projecting onto a space of atomic orbitals, the
Hamiltonian matrix for N atoms is

The parameters of the model are:

• Surface: ε0s,ε
0
p, t

0
ss, t

0
sp, t

0
ps, t

0
pp; ε

00
s ,ε

00
p, t

00
ss, t

00
sp, t

00
ps, t

00
pp.

• Interior: εs, εp, tss, tpp, tsp.

In the current work, we have assumed for simplicity
that all surface parameters are numerically the same as
interior ones and chosen the remaining parameters as
given in Table 1.

iαjHjjβh i=

1s 1p 2s 2p 3s 3p � � � N−1ð Þs N−1ð Þp Ns Np

1s ε0s 0 t0ss t0sp 0 0 � � � 0 0 0 0

1p 0 ε0p t0ps t0pp 0 0 � � �
2s t0ss t0ps εs 0 tss tsp � � �
2p t0sp t0pp 0 εp − tsp tpp � � �
3s 0 0 0 − tsp εs 0 � � �
3p 0 0 tss − tsp 0 εp � � �

� � �
N−1ð Þs � � � tss tsp εs 0 t00ss t00sp
N−1ð Þp � � � − tsp tpp 0 εp t00ps t00pp
Ns � � � 0 0 t00ss t00ps ε00s 0

Np � � � 0 0 t00sp t00pp 0 ε00p

0
BBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCA

ðA1Þ
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